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AJP is a direct-write (DW) additive manufacturing (AM)
technique, used for manufacture of electronic devices.

AJP allows for low-temperature, high-resolution fabrication of electronics 
(≤10 μm), accommodating a wide range of ink viscosity (0.7-2500 cP).

Aerosol Jet Printing (AJP )

Hon, K., et al., CIRP Annals-Manufacturing Technology, 57(2), pp. 601-620 (2008).

Hon, K., et al., CIRP Annals-Manufacturing Technology, 57(2), pp. 601-620 (2008).
Parekh, D. et al., Additive Manufacturing (Chapter 8), CRC Press, Boca Raton, Florida, p. 215., 2015.
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Salary, R., et al., 2016, ASME-JMSE, 139(2), p. 021015. 

Process Monitor Camera

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.
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AJP has been used for fabrication of supercapacitors, 
inter-digitated electrodes, antennas, biosensors, etc.

Novel solution-based materials, such as metal nanoparticles, 
graphene oxide, and PEDOT:PSS can be deposited.

Aerosol Jet Printing of Electronic Devices

Hedges, M., et al., DDMC, Berlin, Germany, Mar. 14–15, 2012, pp. 14–15.
King, B., et al., Lockheed Martin Palo Alto Colloquia, Palo Alto, CA, 2009.
Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

Graphene Oxide PEDOT:PSS Polythiophene

An antenna printed on 
Corning Willow glass.

rGO-SC printed on 
Corning Eagle glass.

Silver IDEs printed on 
polyimide.



Nonlinear and Nonstationary Behavior of AJP
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There are process-material-machine interactions which 
swerve the AJP process off any pre-defined optimal window.

AJP is intrinsically unstable and prone to gradual drifts. Hence, real-
time monitoring and closed-loop control are bourgeoning needs.

Acceptable Line Quality Discontinuous Flow

Overspray Excess Flow

Insufficient Flow DensityInconsistent Collimation

30 µm

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. Salary, R., et al., ASME-MSEC 2016, Vol. 2, Virginia Tech, Blacksburg, VA, USA, June 27-July 1, 2016.

Line Quality
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Ambient Humidity

Substrate Type

Focusing Ratio

Carrier Gas Flow Rate

Gas Flow Saturation
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Objectives:

(1) In situ image acquisition from the traces of a device right 
after deposition.

(2) In situ image processing and quantification of trace 
morphology.

(3) In situ estimation of the device functional properties, using 
a supervised machine learning model.

(4) CFD modeling of AJP to explain the underlying aerodynamic 
phenomena behind aerosol transport and deposition.

Goal:

Real-time functional monitoring of AJ-printed electronic devices.
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Sensor-Instrumented Setup
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The AJP setup is supported by high-resolution CCD 
cameras, allowing for in situ image acquisition.

Lens

CCD 
Camera

Process 
Camera

Lens

LED 
Light

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

Process 
Camera

Alignment 
Camera

Light 
Source

Dep. 
Head

Using the in-line imaging system, images are acquired 
from the traces of a device right after deposition.
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Quantification of 2D Features of Line Morphology
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Image-based quantifiers are introduced to 
capture several aspects of line morphology.

10 µm

Average Intensity 
within a Line

2. Line Density (Lρ) 

Distance and 
intensity

6.5 µm

Overspray

4. Overspray (LOS) 

Discontinuous Edge

28 µm

5. Line Discontinuity (LDisc) 

Width

20 µm

1. Line Width (LW) 

Upper Edge

Lower Edge 5 µm

Edge 
ProfileAverage 

Profile

3. Edge Quality (LEQ) 

Fiedler number, a graph-theoretic quantifier, is 
used as a measure of surface morphology.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

6. Fiedler Number (λ2) 

Network 
Graph

P. Rao, et al., 2015, IIE Transactions, Quality and Reliability Engineering, 47(10), pp. 1-24.



Quantification of 2D Features – Case Study
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Several aspects of line morphology are captured,
based on the proposed image-based quantifiers.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

In situ quantification of line morphology allows for
process monitoring and closed-loop control in AJP.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 



Quantification of 2D Features – Case Study
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Several aspects of line morphology are captured,
based on the proposed image-based quantifiers.

In situ quantification of line morphology allows for
process monitoring and closed-loop control in AJP.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 
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Computational Fluid Dynamics (CFD) Modeling
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The deposition head was modeled, 
based on a patent and X-ray imaging.

The deposition head was CT-scanned to 
measure the internal structure accurately.

King, B. H., Patent: US8640975 B2., Feburary 4, 2014.
Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015.



Computational Fluid Dynamics (CFD) Modeling
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Boundary ConditionsDiscrete-Phase Modeling

= 𝐅𝐷 + 𝐅𝐵𝑎𝑠𝑠𝑒𝑡 + 𝐅𝑉𝑀 + 𝐅𝑃𝐺

+ 𝐅𝑔 + 𝐅𝐵𝑢 + 𝐅𝑆𝑎𝑓𝑓 + 𝐅𝑀𝑎𝑔

 𝐅

Only the drag force and Saffman lift force are significant.
Hoey, J. M., et al., Hindawi Journal of Nanotechnology, 2012.
Akhatov, I., et al., Microfluidics and Nanofluidics, 5(2), pp. 215-224, 2008.
Crowe, C. T., et al., Multiphase Flows with Droplets and Particles, 2nd Ed., CRC Press, Boca Raton, FL, USA, 2011.
Marshall, J., Journal of Computational Physics, 228(5), pp. 1541-1561, 2009.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

Salary, R., et al., 2016, ASME-JMSE, 139(2), p. 021015. 



Computational Fluid Dynamics (CFD) Modeling
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At high ShGFRs (≥ 100 sccm), pressure builds up in the head, 
leading to uneven aerosol deposition and poor line quality.

Collimation of the aerosol flow is limited due to
the pressure buildup in the deposition head.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 



CFD Model Validation with Experimental Results
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The aerosol deposition profile becomes narrower when 
the ShGFR increases, as observed experimentally.

More focused aerosol deposition is obtained at high ShGFRs.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 



CFD Model Validation with Experimental Results
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The pressure buildup in the combination chamber 
becomes significant at the ShGFR of 80 sccm onwards.

The maximum pressure limit is approximately 622 Pa.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 



CFD Model Validation with Experimental Results
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The pressure buildup in the combination chamber 
becomes significant at the ShGFR of 80 sccm onwards.

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

Salary, R., et al., 2016, Journal of Manufacturing Science and Engineering, 139(2), p. 021015. 

The maximum pressure limit is approximately 622 Pa.
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Quantification of 3D Features of Line Morphology
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Line topology can be recovered, given an image, 
illumination direction, and surface reflectivity.

Recovery of line topology allows for in situ estimation of 3D 
characteristics, such as thickness, CSA, and surface roughness.

AJP-Printed Electronic Structure

1 mm

Image
Acquisition

Online 2D Image

100 μm

Surface
Recovery

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.

3D Reconstruction of Topology

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.



Quantification of 3D Features of Line Morphology
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Surface reflectance mathematically corresponds to image 
irradiance, and constitutes the basis for all SfS methods.

The SfS problem is intrinsically underdetermined.  Certain 
assumptions are needed to establish a well-posed problem.

𝐸 𝑥, 𝑦 =
𝜌𝐈𝑇 −𝑝, −𝑞, 1 𝑇

1 + 𝑝2 + 𝑞2

𝐈 = sin 𝛼𝐈 cos 𝛽𝐈 , sin 𝛼𝐈 sin 𝛽𝐈, cos 𝛼𝐈
𝑇

𝑝 =
𝜕𝑍(𝑥,𝑦)

𝜕𝑥

𝑞 =
𝜕𝑍(𝑥,𝑦)

𝜕𝑦

𝐧 =
−𝑝, −𝑞, 1 𝑇

1 + 𝑝2 + 𝑞2

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.
Elhabian, S. Y., 2008, Computer Vision and Image Processing (CVIP) Laboratory, University of Louisville, Louisville, KY, USA.

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.



Quantification of 3D Features of Line Morphology
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Five fundamental assumptions are made to convert 
the SfS problem to a well-posed, balanced problem.

Depending on the method of choice, additional assumptions 
may be needed to further simply the problem.

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.
Elhabian, S. Y., 2008, Computer Vision and Image Processing (CVIP) Laboratory, University of Louisville, Louisville, KY, USA.

(1) The camera has orthographic projection.
(2) The z-axis of the camera represents the optical axis.
(3) The surface is diffuse or Lambertian.
(4) The surface is not self-shadowing.
(5) Illumination direction and surface albedo are constant.



Literature Review
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There are four broad classes of SfS approaches: 
Minimization, Propagation, Local, and Linear.

The local and propagation approaches are not used due 
to their underlying computational complexity and delay.

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.
Elhabian, S. Y., 2008, Computer Vision and Image Processing (CVIP) Laboratory, University of Louisville, Louisville, KY, USA.

Minimization
Horn, Chellappa, Szeliski, Maydan, Kuo, Bobick, and Yang

Local
Rosenfeld and Pentland

Propagation
Tourin, Oliensis, and Bruckstein

Linear
Pentland and Shah

Elhabian, S. Y., 2008, Computer Vision and Image Processing (CVIP) Laboratory, University of Louisville, Louisville, KY, USA.
Zhang, R., et al., 1999, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), pp. 690-706.

Horn, B. K., et al., 1989, MIT Press, Cambridge, MA, USA.
Zheng, Q., et al., 1991, IEEE CVPR '91, Maui, HI, USA, pp. 540-545.
Szeliski, R., 1991, CVGIP: Image Understanding, 53(2), pp. 129-153.
Malik, J., et al., 1989, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), pp. 555-566.
Lee, K. M., et al., 1993, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(8), pp. 815-822.
Leclerc, Y. G., et al., 1991, IEEE CVPR'91, pp. 552-558.
Vega, O. E., et al., 1993, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6), pp. 592-597.

Rouy, E., et al., 1992, SIAM Journal on Numerical Analysis, 29(3), pp. 867-884.
Dupuis, P., et al., 1992, IEEE CVPR'92, pp. 453-458.
Kimmel, R., et al., 1992, Technion-Israel Institute of Technology, Report 9209.

Lee, C.-H., et al., 1985, artificial Intelligence, 26(2), pp. 125-143.

Pentland, A., 1989, Spatial vision, 4(2), pp. 165-182.
Ping-Sing, T., et al., 1994, Image and Vision computing, 12(8), pp. 487-498.



Quantification of 3D Features of Line Morphology
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The performance of the three SfS methods is
assessed using synthetic and real images.

The Shah’s method has the highest accuracy and hence,
is used for reconstructing the 3D profile of AJP lines.

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.



Quantification of 3D Features – Case Study
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Having recovered the 3D profile of a trace, the critical 
features of the trace topology can be quantified.

Recovery and quantification of line topology pave the way for 
in situ monitoring of device functional properties.

Salary, R., et al., ASME J. Manuf. Sci. Eng., 139(10): 101010-101010-13, 2017.

Salary, R., et al., 2017, Journal of Manufacturing Science and Engineering, 139(10), p. 101010.
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Development of a MISO Classification Model
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Sparse representation for classification (SRC) is a 
supervised learning technique, requiring a priori labels. 

The objective is to estimate 𝛽, and thus
determine the class of a new sensor signal (𝑌).

𝑌 = 𝐴𝛽 + 𝜀
𝑌 ∈ ℝ𝑚×1 |     𝛽 ∈ ℝ𝑁×1 |     𝐴 ∈ ℝ𝑚×𝑁 |     𝜀

A New Sensor 
Signal

Unknown Vector 
of Coefficients

Design Matrix

SRC formulates an underdetermined system of linear equations 
with 𝑁 unknowns/samples and 𝑚 equations/features (𝑁 > 𝑚).

min 𝛽 0

𝑠. 𝑡. ∶ 𝑓 𝑌 − 𝐴𝛽 ≤ 𝛿

min 𝛽 1

𝑠. 𝑡. ∶ 𝑌 − 𝐴𝛽 2
2 ≤ 𝛿

Residual
Threshold

Error

Assuming 𝜷 is sparse 

Convex
Optimization 

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.



 𝛽 = argmin
𝛽

𝑌 − 𝐴𝛽 2
2

+λ
1 − 𝛼

2
𝛽 2

2 + 𝛼 𝛽 1

Development of a MISO Classification Model
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A novel optimization problem is formulated,
based on LASSO, Elastic Net, and Ridge Regression. 

If 𝜶 ≈ 𝟎: Ridge Regression (𝓁2 minimization); 
If 𝜶 = 𝟏: LASSO (𝓁1 minimization)
If 𝟎 < 𝜶 < 𝟏: Elastic Net (𝓁1 and 𝓁2 minimization).

Sum of Squared Errors (SSE)

Variance of 
Coefficients

Number of 
Coefficients

Regularization 
Parameter 

Weighting Parameter 𝑐 = argmin
𝑐

𝐴𝛿𝑐
 𝛽 − 𝑌

Sparsifying
Operator

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.



Development of a MISO Classification Model
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An classification space is mapped using a heuristic 
method, giving the optimal values of λ and 𝛼.

60% of the data is dedicated to training, 30% to 
validation (parameter optimization), and 10% to testing.

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.



Development of a MISO Classification Model
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Electronic traces were printed three times for each 
treatment combination of the experimental design.

These structures allow for 4-point probe measurements of 
line resistance, and definition of a priori classification labels.

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.



Development of a MISO Classification Model
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Using the CCD camera, online images were acquired 
from each trace, and subsequently processed.

3D features were additionally quantified after
recovery of the line topology using SfS image analysis.

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.



Development of a MISO Classification Model
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In situ reconstruction of the line topology for near real-
time quantification of the CSA and other 3D features.

In total, around 30 morphology features were extracted from 
each image, fed as inputs to the machine learning model.

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.



Development of a MISO Classification Model
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The classification performance implies the line 
resistance can be accurately estimated online.

Having implemented the classifier 100 times, an 
average F-Score of 0.95±0.005 was obtained (α=0.05).

Classification Results Predicted Condition

Optimal Method: LASSO Class 1 Class 2 Class 3

True Condition

Class 1 1 0 0

Class 2 0 0.92 0.08

Class 3 0 0 1

Classification 
Measures

Recall 1 0.92 1

Precision 1 1 0.92

False Alarm 0 0 0

Specificity 1 1 1

Optimization
λ (Opt) 0.0041

α (Opt) 1

Performance
F-Score 0.97

Evaluation

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.



Development of a MISO Classification Model
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The performance of the SRC classifier was further 
contrasted against that of several other classifiers.

The SRC classifier appears to be relatively robust and 
accurate, being among high-performance classifiers.

Salary, R., et al., ASME-MSEC 2018, Texas A&M University, College Station, TX, USA, June 18-22, 2018.
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Summary

The Optomec AJP setup was integrated with a high-resolution 
imaging system, allowing for in situ image acquisition.

2D and 3D image-based quantifiers were subsequently 
introduced to capture various aspects of line morphology.

A CFD model was developed to explain the complex 
aerodynamics behind aerosol transport and deposition in AJP.

It was demonstrated that using the learning model, line 
resistance could be predicted in situ with an accuracy of ≥ 90%.

At high ShGFRs, pressure builds up in the head, leading to 
uneven aerosol deposition and poor line quality.

AJP is an additive manufacturing (AM) technique, utilized for the 
fabrication of a broad range of electronic devices.

AJP is intrinsically unstable and prone to gradual drifts in 
machine behavior and deposited material.

The goal of this work was to realize near real-time functional 
monitoring of AJ-printed electronic devices.

A novel MIMO classification approach (based on SRC) was 
forwarded to estimate device functional properties.
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